Stimulation of cholinephosphotransferase activity by phosphatidylcholine transfer protein. Regulation of membrane phospholipid synthesis by a cytosolic protein.
نویسندگان
چکیده
The effect of rat liver phosphatidylcholine transfer protein on the incorporation of CDP-choline and dioleoylglycerol into phosphatidylcholine catalyzed by rat liver microsomal CDP-choline: 1,2-diacyl-sn-glycerol cholinephosphotransferase was studied. In the presence of phosphatidylcholine transfer protein, the incorporation of CDP-choline into phosphatidylcholine was markedly stimulated. Phosphatidylcholine transfer protein isolated from either rat or bovine liver was capable of this stimulatory effect; in contrast, phosphatidylinositol transfer protein from rat liver had no effect on phosphatidylcholine synthesis. Kinetic analysis showed that microsomal phosphatidylcholine synthesis increased 2.4-fold after 1 min and reached a maximum of approximately 10-fold within 10 min in the presence of phosphatidylcholine transfer protein; in the absence of this protein phosphatidylcholine synthesis stopped after 2-4 min. These results suggest that phosphatidylcholine transfer protein permits phosphatidylcholine synthesis to proceed further. With the addition of phospholipid vesicles, as an acceptor membrane in the reaction mixture, there was a significant amount of protein-mediated transfer of synthesized phosphatidylcholine to the vesicles. Measurable transfer of synthesized phosphatidylcholine to vesicles could only be detected after a lag of 2-4 min. The stimulation of cholinephosphotransferase could be nearly abolished by increasing the amount of added phospholipid vesicles; concurrently, a greater transfer to the vesicles was observed. These results describe a new property of phosphatidylcholine transfer protein which may be of physiological significance in the regulation of phosphatidylcholine synthesis in mammalian tissues.
منابع مشابه
Interactions among pathways for phosphatidylcholine metabolism, CTP synthesis and secretion through the Golgi apparatus.
Phosphatidylcholine is the major phospholipid in eukaryotic cells. It serves as a structural component of cell membranes and a reservoir of several lipid messengers. Recent studies in yeast and mammalian systems have revealed interrelationships between the two pathways of phosphatidylcholine metabolism, and between these pathways and those for CTP synthesis and secretion via the Golgi. These pr...
متن کاملCDP-choline significantly restores phosphatidylcholine levels by differentially affecting phospholipase A2 and CTP: phosphocholine cytidylyltransferase after stroke.
Phosphatidylcholine (PtdCho) is a major membrane phospholipid, and its loss is sufficient in itself to induce cell death. PtdCho homeostasis is regulated by the balance between hydrolysis and synthesis. PtdCho is hydrolyzed by phospholipase A2 (PLA2), PtdChospecific phospholipase C (PtdCho-PLC), and phospholipase D (PLD). PtdCho synthesis is rate-limited by CTP:phosphocholine cytidylyltransfera...
متن کاملA phosphatidylinositol transfer protein controls the phosphatidylcholine content of yeast Golgi membranes
SEC14p is required for protein transport from the yeast Golgi complex. We describe a quantitative analysis of yeast bulk membrane and Golgi membrane phospholipid composition under conditions where Golgi secretory function has been uncoupled from its usual SEC14p requirement. The data demonstrate that SEC14p specifically functions to maintain a reduced phosphatidylcholine content in Golgi membra...
متن کاملAmino acid modulation of renal phosphatidylcholine biosynthesis in the rat.
The hypothesis that amino acids act as modifiers of phospholipid biosynthesis was tested in renal cortical cells from normal rats. The rate of [14C]-choline incorporation into phospholipid in cortical slices was enhanced by the addition of lysine or arginine to the incubation medium, and reduced by phenylalanine, aspartic acid, or four other amino acids. Lysine and aspartic acid appeared to mod...
متن کاملNMDA receptor overactivation inhibits phospholipid synthesis by decreasing choline-ethanolamine phosphotransferase activity.
Overactivation of NMDA receptors is believed to induce neuronal death by increasing phospholipid hydrolysis and subsequent degradation. We showed previously that NMDA releases choline and inhibits incorporation of [3H]choline into phosphatidylcholine before excitotoxic neuronal death. On the basis of these results, we hypothesized that excitotoxicity results from inhibition of synthesis rather ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 265 2 شماره
صفحات -
تاریخ انتشار 1990